296 research outputs found

    Macroscopic Elastic Properties of Textured ZrN--AlN Polycrystalline Aggregates: From Ab initio Calculations to Grain-Scale Interactions

    Full text link
    Despite the fast development of computational materials modelling, theoretical description of macroscopic elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task. In this communication we use a supercell-based approach to obtain the elastic properties of random solid solution cubic ZrAlN system as a function of the metallic sublattice composition and texture descriptors. The employed special quasi-random structures are optimised not only with respect to short range order parameters, but also to make the three cubic directions [100][1\,0\,0], [010][0\,1\,0], and [001][0\,0\,1] as similar as possible. In this way, only a small spread of elastic constants tensor components is achieved and an optimum trade-off between modelling of chemical disorder and computational limits regarding the supercell size is achieved. The single crystal elastic constants are shown to vary smoothly with composition, yielding x0.4x\approx0.4-0.5 an alloy constitution with an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Young's modulus independent on the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal elastic properties, both within the isotropic aggregate limit, as well as with fibre textures with various orientations and sharpness. It turns out, that for low AlN mole fractions, the spread of the possible Young's moduli data caused by the texture variation can be larger than 100 GPa. Consequently, our discussion of Young's modulus data of cubic ZrAlN contains also the evaluation of the texture typical for thin films.Comment: 10 pages, 6 figures, 3 table

    Edaq530: a transparent, open-end and open-source measurement solution in natural science education

    Get PDF
    We present Edaq530, a low-cost, compact and easy-to-use digital measurement solution consisting of a thumb-sized USB-to-sensor interface and a measurement software. The solution is fully open-source, our aim being to provide a viable alternative to professional solutions. Our main focus in designing Edaq530 has been versatility and transparency. In this paper, we shall introduce the capabilities of Edaq530, complement it by showing a few sample experiments, and discuss the feedback we have received in the course of a teacher training workshop in which the participants received personal copies of Edaq530 and later made reports on how they could utilise Edaq530 in their teaching

    Towards predictive modelling of near-edge structures in electron energy loss spectra of AlN based ternary alloys

    Get PDF
    Although electron energy loss near edge structure analysis provides a tool for experimentally probing unoccupied density of states, a detailed comparison with simulations is necessary in order to understand the origin of individual peaks. This paper presents a density functional theory based technique for predicting the N K-edge for ternary (quasi-binary) nitrogen alloys by adopting a core hole approach, a methodology that has been successful for binary nitride compounds. It is demonstrated that using the spectra of binary compounds for optimising the core hole charge (0.35e0.35\,\mathrm{e} for cubic Ti1x_{1-x}Alx_xN and 0.45e0.45\,\mathrm{e} for wurtzite Alx_xGa1x_{1-x}N), the predicted spectra evolutions of the ternary alloys agree well with the experiments. The spectral features are subsequently discussed in terms of the electronic structure and bonding of the alloys.Comment: 11 pages, 9 figures, 1 tabl

    Why, what, and how? case study on law, risk, and decision making as necessary themes in built environment teaching

    Get PDF
    The paper considers (and defends) the necessity of including legal studies as a core part of built environment undergraduate and postgraduate curricula. The writer reflects upon his own experience as a lawyer working alongside and advising built environment professionals in complex land remediation and site safety management situations in the United Kingdom and explains how themes of liability, risk, and decision making can be integrated into a practical simulation in order to underpin more traditional lecture-based law teaching. Through reflection upon the writer's experiments with simulation-based teaching, the paper suggests some innovations that may better orientate law teaching to engage these themes and, thereby, enhance the relevance of law studies to the future needs of built environment professionals in practice.</p

    The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in Arabidopsis

    Get PDF
    SummaryHistone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation

    Phase imaging of irradiated foils at the OMEGA EP facility using phase-stepping X-ray Talbot–Lau deflectometry

    Get PDF
    Producción CientíficaDiagnosing the evolution of laser-generated high energy density (HED) systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions. Talbot–Lau interferometry constitutes a promising tool, since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas. We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer. A polystyrene (CH) foil was irradiated by a laser of 133 J, 1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser (153 J, 11 ps). The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping. We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above 1e22 cm−3. These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.The work has been supported by Research Grant No. PID2019-108764RB-I00 from the Spanish Min istry of Science and Innovatio

    Developing autonomous learning in first year university students using perspectives from positive psychology

    Get PDF
    Autonomous learning is a commonly occurring learning outcome from university study, and it is argued that students require confidence in their own abilities to achieve this. Using approaches from positive psychology, this study aimed to develop confidence in first‐year university students to facilitate autonomous learning. Psychological character strengths were assessed in 214 students on day one at university. Two weeks later their top three strengths were given to them in study skills modules as part of a psycho‐educational intervention designed to increase their self‐efficacy and self‐esteem. The impact of the intervention was assessed against a control group of 40 students who had not received the intervention. The results suggested that students were more confident after the intervention, and that levels of autonomous learning increased significantly compared to the controls. Character strengths were found to be associated with self‐efficacy, self‐esteem and autonomous learning in ways that were theoretically meaningful

    Using ILP to Identify Pathway Activation Patterns in Systems Biology

    Get PDF
    We show a logical aggregation method that, combined with propositionalization methods, can construct novel structured biological features from gene expression data. We do this to gain understanding of pathway mechanisms, for instance, those associated with a particular disease. We illustrate this method on the task of distinguishing between two types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC). We identify pathway activation patterns in pathways previously implicated in the development of cancers. Our method identified a model with comparable predictive performance to the winning algorithm of a recent challenge, while providing biologically relevant explanations that may be useful to a biologist
    corecore